

Future Proofing Your Business with HSMAI

Software is Eating the Hospitality Operation

Dr. Sungsoo Kim

Associate Professor
Singapore Institute of Technology

Dr. Sungsoo Kim

About me

- ACUE Distinguished Teaching Scholar
- Researcher / Consultant
 - Revenue optimization
 - Strategic management
 - o Data Analytics (e.g., big data)
 - Economic analysis, including impact studies and supply and demand analysis
 - Feasibility and market study
 - Technology innovation (e.g., cryptocurrency)

sungsoo.kim@singaporetech.edu.sg

Word cloud

•••

Are there specific technologies that have significantly improved (or will improve) hospitality operations?

Mentimeter Technology

Show results immediately

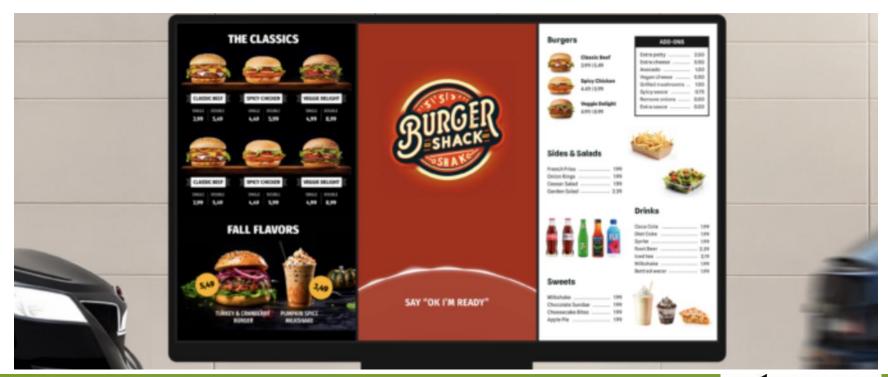
Contactless Payment Cards

Mobile Payments (e.g., apple
pay, WeChat, Alipay)

RFID (Radio-Frequency

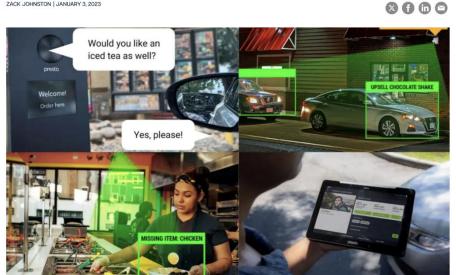
Identification) Technology (Tag)

Contactless Ticketing


Contactless Smart Locks

Contactless Sensors

Health Passports


Voice Technology

Home > Foodservice

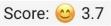
Smart-Voice Technology: Coming Soon, to a Drive-Thru Near You

ZACK JOHNSTON | JANUARY 3, 2023

In a world of fast-changing consumer demands, the classic fast-food drive-thru window is evolving. From doubling lanes to fully digital menu boards, restaurants have made all kinds of improvements to the drivethru service.

With technology quickly catching up to imagination, more changes to the QSR industry are sure to come.

KFC is the first fast food restaurant in India to enable ordering through its branded Alexa skill the



0%

Rating

Is technology (e.g., automation) in restaurants transforming the food industry in a positive way?

42%

•••

50% 0

Show results immediately

0%

Mobile ALOHA

Humans are completely free from physical labor.

Mobile ALOHA

Team

Zipeng Fu (project co-lead)

Tony Z. Zhao (project co-lead)

Chelsea Finn (advisor)

- Stanford University and Google Project
- Humans are completely free from physical labor.

Abstract

tion learning from human demonstrations has shown impressive performance in robotics. However, most results in a table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, evelop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the 4A system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, nen perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts ormance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and ing an elevator, and lightly rinsing a used pan using a kitchen faucet.

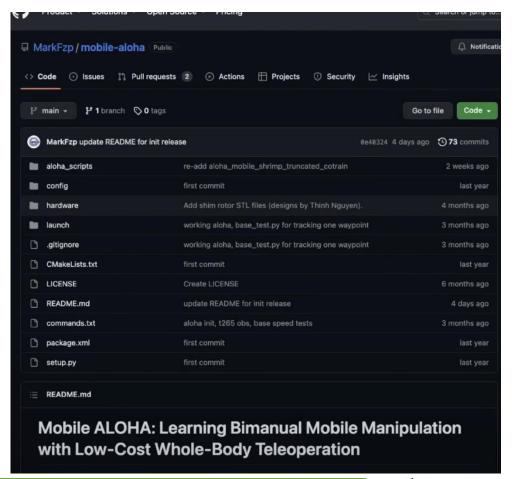
Word cloud

••

Can you give a ballpark figure about how much it costs to make Mobile Aloha?

1 million 2M 1 milion USD

Show results immediately


Materials

 All materials are available to purchase on Internet

Part	Quantity	Quantity Link		
Robots				
/iperX 300 Robot 2 Arm 6DOF		https://www.trossenrobotics.com/viperx-3 00-robot-arm-6dof.aspx	\$5,695.95	
WidowX 250 Robot Arm 6DOF	2	https://www.trossenrobotics.com/widowx- 250-robot-arm-6dof.aspx	\$3,295.95	
Tracer AGV	1	https://www.trossenrobotics.com/agilex-tr acer-agv.aspx	\$8,999.95	
Onboard Compute				
Lambda Labs 1 Tensorbook		https://lambdalabs.com/deep-learning/lap tops/tensorbook	\$2,399.00	
Robot Frame				
4040 800mm x 8 4		https://a.co/d/2DOkaGT (2 pcs)	\$42.29	
4040 500mm x 6	2	https://a.co/d/8mc69EV (4 pcs)	\$58.99	
4040 400mm x 2	2	https://a.co/d/9LNXjQg (1 pcs)	\$22.99	
4040 300mm x 7	2	https://a.co/d/6vgSVEO (4 pcs)	\$59.99	
4040 L-shape connectors x 28	5	https://a.co/d/ddY3mlX (6 pcs)	\$32.99	
4040 T-shape connectors x 4	1	https://a.co/d/fFDfjsg (6 pcs)	\$30.99	
4040 45-degree corner connectors	1	https://a.co/d/1wijAh3	\$21.99	
4040 Corner Bracket and T-Slot Sliding Nuts		https://a.co/d/fh7Gb8r	\$24.99	

Source Coding

Mobile ALOHA

Team

(project co-lead)

(advisor)

Tony Z. Zhao (project co-lead)

Abstract

tion learning from human demonstrations has shown impressive performance in robotics. However, most results in a table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, evelop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the 4A system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, nen perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts ormance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and ing an elevator, and lightly rinsing a used pan using a kitchen faucet.

- Stanford University and Google Project
- Humans are completely free from physical labor.
- All materials are available to purchase on Internet
- Imitation learning from human demonstration.

Imitation learning from human demonstration.

	Wipe Wine (50 demos)						Cook Shrimp (20 demos)					
		Grasp Towel	Lift Glass and Wipe	Place Glass	Whole Task		Add Oil	Add Shrimp	Flip Shrimp	Plate Shrimp	Whole Task	
Co-train		100	95	100	95		100	100	60	67	40	
No Co-train	95	55 58	90	50	100	100	40	50	20			
Rinse Pan (50 demos			s)	Use Cabinet (50 demos)								
		Grasp Pan	Turn On Faucet	Place Pan	Whole Task		Open Cabinets	Grasp Pot	Place Pot	Close Cabinet	Whole Task	
Co-train		100	80	100	80		95	100	95	95	85	
No Co-train		100	0	100	0		95	95	100	95	85	
	Ca	ıll Eleva	tor (50 dem	ios)	Pu	ısh Chai	rs (50 den	nos)	Hi	gh Five (2	0 demo	s)
	Navi.	Press Button	Enter Elevator	Whole Task	1-3rd Chair	4th (OOD)	5th (OOD)	Whole Task	Unseen Attire	Unseen Human	Navi.	Whole Task
Co-train	100	100	95	95	100	85	89	80	90	80	100	85
No Co-train	100	5	0	0	100	70	0	0	90	80	100	85

Software is Eating the World.

Marc Andersson at a 16z Venture Capital

Six Levels of AGI

AGI - highly autonomous systems that outperform humans at most economically valuable work

		like learning new skills
Level 0: No AI	Narrow Non-AI	General Non-AI
	calculator software; compiler	human-in-the-loop computing,
		e.g., Amazon Mechanical Turk
Level 1: Emerging	Emerging Narrow AI	Emerging AGI
equal to or somewhat better than	GOFAI4; simple rule-based sys-	ChatGPT (OpenAI, 2023), Bard
an unskilled human	tems, e.g., SHRDLU (Winograd,	(Anil et al., 2023), Llama 2
	1971)	(Touvron et al., 2023)
Level 2: Competent	Competent Narrow AI	Competent AGI
at least 50th percentile of skilled	toxicity detectors such as Jig-	not yet achieved
adults	saw (Das et al., 2022); Smart	
	Speakers such as Siri (Apple),	
	Alexa (Amazon), or Google As-	
	sistant (Google); VQA systems	
	such as PaLI (Chen et al., 2023);	
	Watson (IBM); SOTA LLMs for a	
	subset of tasks (e.g., short essay	
	writing, simple coding)	
Level 3: Expert	Expert Narrow AI	Expert AGI
at least 90th percentile of skilled	spelling & grammar checkers	not yet achieved
adults	such as Grammarly (Gram-	
	marly, 2023); generative im-	
	age models such as Imagen (Sa-	
	haria et al., 2022) or Dall-E 2	
	(Ramesh et al., 2022)	
Level 4: Virtuoso	Virtuoso Narrow AI	Virtuoso AGI
at least 99th percentile of skilled	Deep Blue (Campbell et al.,	not yet achieved
adults	2002), AlphaGo (Silver et al.,	
	2016, 2017)	
Level 5: Superhuman	Superhuman Narrow AI	Artificial Superintelligence
outperforms 100% of humans	AlphaFold (Jumper et al., 2021;	(ASI)

Mobile Aloha (Level 3: Expert)

Word cloud

•••

How soon will we see AGI (human-like) robots, such as enhanced mobile Aloha, in hospitality operations?

 $5 \frac{5 \text{ years}}{5 \text{ yrs}}$ 2 years

Show results immediately

Things to Consider

- How do you balance the need for automation with maintaining a personal touch in your services?
- Have you observed any resistance or challenges from staff in adapting to new technological tools?
- How do you see human-like AI robotics influencing customer choices or customer satisfaction in the hospitality industry?
- What measures do you have in place to address cybersecurity or privacy concerns in your operation?

Future Proofing Your Business with HSMAI

